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The mathematical background and the computing methods applied to the classification of lattices and 
crystallographic groups of 4-dimensional space R4 are described. 

This paper is a direct continuation of the preceding 
one (Neubilser, Wondratschek & Billow, 1971) to which 
we refer as I. We shall use the definitions explained 
there. In this paper we describe the methods we used 
to derive all Bravais types of lattices of R4 and to order 
these, as well as the arithmetic and geometric classes, by 
means of crystal families and crystal systems. 

Our approach started from Bfilow's (1967; cf  also 
Billow & Neubilser, 1970) determination of the 710 
arithmetic crystal classes of R4, which has since been 
reconfirmed. 

1. The determination of the arithmetic classes of R4 

The computation started from a result of Dade (1965). 
He proved that the maximal finite groups of integral 

4 x 4 matrices fall into 9 classes under transformation 
with integral unimodular matrices and he determined 
one group from each of these classes. We shall call 
these 9 groups the Dade groups of R4. As each finite 
integral 4 x 4 matrix group is contained in a maximal 
one, each arithmetic crystal class is represented by 
at least one of the subgroups of the Dade groups. The 
task of finding all arithmetic crystal classes can there- 
fore be split into two steps: 

(i) Find all subgroups of the 9 Dade groups. 
(ii) Classify the set, so obtained, under transforma- 
tion with integral unimodular matrices. 

The first step was performed using computer pro- 
grams (Felsch & Neubilser, 1963) that determine--  
among other things - all subgroups of a group given 
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by a set of generating elements. Altogether, the 9 Dade 
groups contain 11072 subgroups belonging to 1361 
classes of conjugate subgroups. As conjugate subgroups 
of the Dade groups are arithmetically equivalent, it 
suffices for the determination of all arithmetic classes 
of R4 to choose one representative from each of the 
1361 classes of conjugate subgroups. Before these re- 
presentatives were sorted into arithmetic crystal classes 
further groups were added to their list. These further 
groups came from hand-computations of Zassen- 
haus & Falk (1967) who had started to determine by 
direct methods all arithmetic crystal classes consisting of 
rationally reducible groups of integral matrices, of Jans- 
sen (1967, 1969) who had tried to determine all arith- 
metic crystal classes of (3,1)-reducible groups, and of 
Wondratschek, who had found arithmetic crystal clas- 
ses by representing groups of Hurley's (1951) geometric 
crystal classes on different lattices. These further groups 
were added to the list of groups obtained as subgroups 
of the Dade groups merely as a further check to reduce 
the possibility of computational errors. It was found, 
however - as was to be expected in absence of program- 
ming errors - that each of the groups thus added was 
arithmetically equivalent to one of the subgroups of 
the Dade groups. The way of sorting the whole list of 
groups into arithmetic classes was very similar to the 
one described by Billow (1967) and by Billow & Neu- 
bfiser (1970) for Billow's first computation, except that 
any human error in sorting was avoided by the use 
of magnetic tapes as backing store. We refer to those 
papers for details. The result confirmed Billow's first 
computation: there are 710 arithmetic crystal classes 
in R4 which fall into 227 geometric ones. For each of 
the 710 classes all those groups of the list that belong 
to this class were noted, also for each of the subgroups 
of the Dade groups all its maximal subgroups. We 
used this information to derive a complete list of the 
Bravais types of R4. 

2. Another characterization of Bravais groups 

As explained in I the Bravais types of lattices are in a 
natural 1 - 1 correspondence with the Bravais classes, 
which are special arithmetic crystal classes. In order to 
select the Bravais classes from the set of all arithmetic 
crystal classes we derive from the definition given in I 
another characterization of Bravais classes due to Zas- 
senhaus (1966), applying some linear algebra. 

To each lattice basis B =  {hi , . . . ,  bn} of a lattice L 
in Rn we can assign the n x n matrix B =  (b~ • hj) of the 
scalar products hi" hj of the basis vectors of B. This 
matrix is symmetric and positive definite. Conversely 
each symmetric positive definite matrix can be thus 
obtained from some lattice. 

Let ~(L) be the group of all linear mappings (im- 
plying e. g. that they leave the origin fixed) of Rn which 

(i) map L onto L, 
(ii) are motions, i. e. they are linear mappings that 
leave the lengths of all vectors unchanged. 

The Bravais group N' (L, B) is then the group of ma- 
trices representing ~ (L)  with respect to the basis B. 

Hence the two conditions translate into the following" 
~(L,B)  is the group of all n x n  matrices X which 

(i) are integral unimodular, 
(ii) fulfil the condition X B X t = B ,  where X t denotes 
the transpose of X. 

As each group in a Bravais class is a group ~(L,B)  
for some lattice L and some lattice basis B of L, we see: 

2.1. If we want to know whether a certain arithmetic 
class, given to us by one of its groups Jt °, is a Bravais 
class, we have to decide whether there exists a sym- 
metric positive definite matrix B such that J¢' con- 
sists of all unimodular matrices X with X B X t = B .  

We can do this with the help of the following consider- 
ation (which will be illustrated by an example in §3): 
Let Yf be a group of integral n x n matrices. Then the 
set of all symmetric matrices S such that X S X  t = S for 
all X~3"{' forms a subspace of the n(n+l)/2-dimen- 
sional vector space q5 of all symmetric n x n matrices. 
We denote this subspace by f2(g/f). 

On the other hand, let a subset y'_c ~ be given. The set 
of all unimodular matrices X with X S X t =  S for all 
S~ Y is a group, which we denote by fY(Y). If Y con- 
sists of one element only, say B, we shall write N({B}). 

2.2. Clearly for any group 3¢' of integral matrices we 
have Yt ° _  ~[(2(~)]. 

Let Yc_ y '  ~_ ~.X~fY(Y' )meansXSX~= Sfor all S~Y' 
and in particular X S X t = S  for all SsYc_ Y', hence 
x~c(r).  
This means: 

2.3. Y___ Y' implies fg(Y')__ f~(Y). 

Now let ~ be a group from a Bravais class. Then by 
2.1 there exists a symmetric positive definite matrix B 
such that ~' = fg({B }). Consider g2(~). Then by 2.2 we 
have . ~ _  ~[f2(~)]. As B~I2(N ~) by 2.3 we have 

~ =  ~¢({~ })=_ ~¢[~(~]. 

Hence N'= fY[f2(~)]. So we arrive at the following 
characterization: 

The arithmetic class of a finite group sgg' of 
integral matrices is a Bravais class if and only 
if 3,Y= ~[g2(W)]. 

This, however, is a characterization we can utilize with 
the data at our disposal. 

Any subspace of q5 can be given by a finite set of 
linear equations and the dimension of such a subspace 
can be determined from these equations by well-known 
techniques. In particular the subspace f2(oY') is given 
by the finite set of linear equations 

X S X  t = S ,  

where S is a symmetric matrix of n(n+ 1)/2 indetermi- 
nates, and where X runs through all elements of J r .  
So it is easy to find f2(J¢') for a given 3(f. 
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It is a much more difficult task to find fg(Y') for a 
subspace Y" of q~ given by a set of linear equations. 
However, using all that has been determined with the 
computer we can avoid such computations by the 
procedure described in § 4. 

have 

3. An example 

We now give an example to illustrate the concepts used 
in §2. 

Let og ° be the group consisting of the matrices: 

I =  (10 ~) ; X I = ( I  10) ; Xz=(O ~ ) . ,  

0(24 °) is determined by the equations XSX t = S where 
X runs through all elements of 3f.  Instead we use the 
equivalent equations SXt=X- 'S .  Further it is clear 
that it suffices to restrict X to a set of generators of 3f.  
As in our case X, (or Xz) generates 3/t °, we have the 
equation 

SX~ = X~-IS. 

X ] : ( I  10), S : (  sll s~21, sowe 
\S12 $22,/ 

o r  

( - - S l l - - S 1 2 S l l ] = (  S12 $22 ] 

--S12--$22 S12] \ - - S l l  --S12 --S12--$22] 

- - S l l - - S 1 2 : S 1 2  

S11 = $22 
-- S12--$22 = - -S l l  --S12 

S12 = --S12--$22. 

It follows that g2(~) consists of all matrices 

s={  six -½ 11] 
\ -- ½S11 S1 I] 

with s,1 any real number. 
Clearly f~[O(3/f)] contains both ~(~ and I ' .  However, 

also Y={~ ~) fulfils the equations YSY*=S with 
g 

S~O(3/f). The group ~- generated by X1, I ' ,  and Y is 
of order 12. This is the maximal order which a finite 
group of 2 x 2 integral matrices can have. Hence we 
can conclude that o~-= ~[O(~')]. We may therefore say 
that the arithmetic class defined by 3/¢' belongs to the 
Bravais type defined by ~" = f¢[O(W)]. 

4. Determination of the Bravais groups 

The computer programs mentioned already in § 1 of 
this paper produce a list A0 of all subgroups of the Dade 
groups. Furthermore, for each of these subgroups 
all its maximal subgroups are noted. 

The program to be described here will build up from 

* The crystallographer sees at once that this group cannot 
be a Bravais group of any lattice, as it does not contain 

i,-- ('0 

A0 a list B which will contain one representative group 
.W from each Bravais class. Also for each such 3/t" it 
will build up a list A (Yg) which will contain one repres- 
entative group from each arithmetic class belonging 
to the Bravais type defined by YF. 

The program uses a certain procedure recursively. 
In the following description of a general run of this 
procedure we will denote by A the actual state of a list 
which at the beginning of the whole program is iden- 
tical with A0 and is changed in each run by removing 
all groups belonging to arithmetic classes that belong to 
a certain Bravais type. 

(*)The program selects from the groups in A one of 
highest order (e.g. the first one of highest order with 
respect to the ordering in A), let this be 3f.  

and all groups in A, which are arithmetically 
equivalent to 3/{' are removed from A. Then f2(3¢') is 
computed, i.e. a finite system of linear equations de- 
fining f2(~)  is derived from the matrices of 3/f. ~¢' is 
added to the list B. A list A ( ~ )  is started, into which 
~¢' and all its maximal subgroups are put. The program 
works through the list A(~¢') starting with the first 
maximal subgroup of Y'{' in A(Yt°), removing groups 
from it and possibly adding more groups to it, by a sub- 
routine the general run of which will be described now: 

Let ~" be the group in A(3/F) to be investigated. 
Then O ( ~ )  is computed in the same way as O(3¢'). 

Two cases can occur: 
(i) 12(~)#t-2(~).  Then ¢/" remains in A, but is re- 
moved from A(gf). 
(ii) O(¢/')=O(Yg). Then ¢/" and all groups that are 
arithmetically equivalent to ~ are removed from 
A. Further all maximal subgroups of ~/" are added to 
the list A ( ~ )  and all groups in A(a't ~) that are arith- 
metically equivalent to ~' ,  but #¢/ ' ,  are removed 
from it. 

In bothcases the program then continues with the next 
group in A(3¢'), if any. If there is no further group in 
A(-~), the program tests whether A is already empty. 
If this is the case, the program stops. Otherwise it 
starts again with the part described above at (*). 

Obviously, as there are only finitely many subgroups 
of the Dade groups, the whole procedure will even- 
tually stop. 

From the definitions given in I and from the charac- 
terization of the Bravais classes in § 2. of this pa- 
per it is then clear, that the list B contains exactly one 
group from each Bravais class. For each group og a from 
B groups remaining in A(3¢') represent all different 
arithmetic classes belonging to the Bravais type defined 
by the Bravais class of 3¢'. 

As mentioned above, the distribution of the arith- 
metic classes into geometric ones had already been de- 
termined before. Using this distribution and the lists 
A(~) ,  the crystal families and crystal systems were 
easily found, following exactly the definitions 2-7 and 
2.9 in I. 

In this section only a simplified version of the actual 
program has been described. The real program makes 
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more sophisticated use of the data available and is far 
more efficient. 

All the computations were executed on the Elec- 
trologica EL XI /EL X8 at the Rechenzentrum der 
Universit/it Kiel. 

The work has been supported by a grant of the Deut- 
sche Forschungsgemeinschaft. We thank the Deutsche 
Forschungsgemeinschaft, as well as the members of 
the Rechenzentrum, for the opportunities given to us. 
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An explicit classification of lattices and crystallographic groups of 4-dimensional space R4 is given. 
There are (in R4): 710 arithmetic crystal classes; 227 geometric crystal classes belonging to 118 iso- 
morphism types of groups; 64 Bravais classes corresponding to 64 Bravais types of lattices; 33 crystal 
systems; 23 crystal families. 

This paper presents some of the results obtained by the 
methods, explained in Billow, Neubfiser & Wondrat- 
schek (1971) (referred to as I1). The definitions used 
are found in Neubfiser, Wondratschek & Billow (1971) 
(referred to as I). 

1. Crystal classes and crystal systems 

The 710 arithmetic crystal classes are not explicitly 
given. For each (geometric) crystal class the number 
of arithmetic crystal classes contained in it is included 
in Table 1. 

The 227 (geometric) crystal classes, derived by Hur- 
ley (1951) (cf. also Hurley, Neubfiser & Wondratschek, 
1967), have been ordered into the 33 crystal systems in 
Table 1. 

Within a crystal system the crystal classes are ordered 
by the following characteristics (common to all groups 

in a crystal class) which apply in the sequence listed 
below:* 

(a) Group order. Smaller order precedes larger one. 
(b) Determinants. Determinants only positive precede 

determinants both positive and negative. 
(c) Crystal classes of groups containing I' precede 

those of groups not containing 1'. 
(d) Highest order of elements: Smaller order precedes 

higher order. 

* Of course there are other ordering schemes; this one 
seemed convenient to us. A nomenclature for the crystal 
classes corresponding to that of Hermann-Mauguin in Re and 
R3 has not yet been developed. There are some difficulties in 
introducing such a nomenclature, as in R4 there are no symlne- 
try axes in most cases and, therefore, the description of 'sym- 
metry in certain directions' is not as easily used as in R2 and 
R3. 


